Integration Examples

Learn how to integrate Gonzo with popular tools, platforms, and workflows. From container orchestration to cloud log services, these guides show you how to use Gonzo in real-world production environments.

Why Integration Matters

Gonzo's power multiplies when integrated into your existing toolchain:

  • 🐳 Container Ecosystems - Seamless log analysis from Docker, Kubernetes, and container platforms

  • ☁️ Cloud Services - Direct integration with AWS CloudWatch, Azure Monitor, and GCP Logging

  • 📊 Log Storage Systems - High-performance analysis of VictoriaLogs, Elasticsearch, and time-series databases

  • 🔧 Development Tools - Integration with CI/CD, monitoring systems, and alerting platforms

  • 🖥️ System Administration - Enhanced workflows for traditional system log analysis

Integration Overview

Gonzo integrates with your infrastructure in three main ways:

Integration Type
Method
Best For
Examples

Direct Piping

Stdin processing

Real-time streaming

Docker logs, kubectl, stern

File Analysis

File reading

Archived logs, batch processing

CloudWatch exports, log files

OTLP Receiver

Network endpoint

OpenTelemetry integration

Instrumented applications

Container Orchestration

Kubernetes Integration

Analyze logs from Kubernetes clusters with powerful tooling integration:

  • kubectl logs - Direct pod log analysis

  • Stern integration - Multi-pod log streaming with Gonzo

  • Container insights - Understanding deployment and pod logs

  • Namespace-wide analysis - Cluster-level log investigation

Time to complete: 15-20 minutes Prerequisites: Kubernetes cluster access, kubectl installed


Cloud Log Services

AWS CloudWatch Integration

Stream and analyze logs from AWS CloudWatch:

  • CloudWatch Logs streaming - Real-time log analysis from AWS

  • AWS CLI integration - Efficient log retrieval and processing

  • Log group analysis - Multi-service AWS monitoring

  • Cost optimization - Efficient CloudWatch log querying

Time to complete: 20-25 minutes Prerequisites: AWS account, AWS CLI configured


High-Performance Log Storage

VictoriaLogs Integration

Analyze logs from VictoriaLogs time-series database:

  • VictoriaLogs querying - High-performance log retrieval

  • Time-series analysis - Historical log investigation

  • Query optimization - Efficient VictoriaLogs integration

  • Large-scale deployment - Production-grade log analysis

Time to complete: 20-25 minutes Prerequisites: VictoriaLogs installation or access


Container Platforms

Docker Integration

Seamless integration with Docker container logs:

  • Docker logs command - Container log analysis

  • Docker Compose - Multi-container log aggregation

  • Container lifecycle - Monitoring container events

  • Development workflows - Local container debugging

Time to complete: 15-20 minutes Prerequisites: Docker installed


System Administration

System Log Analysis

Enhanced workflows for traditional system administration:

  • Syslog integration - System log monitoring

  • Multiple log sources - Unified system analysis

  • Security monitoring - Auth log analysis

  • Performance debugging - System health investigation

Time to complete: 15-20 minutes Prerequisites: Linux system access


Development Workflows

Development Integration

Integrate Gonzo into development workflows:

  • IDE integration - Log analysis during development

  • Local debugging - Application log investigation

  • Test result analysis - CI/CD test log processing

  • Hot reload monitoring - Watch mode integration

Time to complete: 10-15 minutes Prerequisites: Development environment

Integration Patterns

Real-time log analysis through piping:

# Kubernetes with kubectl
kubectl logs -f deployment/my-app | gonzo

# Docker containers
docker logs -f my-container 2>&1 | gonzo

# System logs
tail -f /var/log/syslog | gonzo

# Cloud services
aws logs tail /aws/lambda/my-function --follow | gonzo

Benefits:

  • ✅ Real-time analysis as logs are generated

  • ✅ No intermediate storage required

  • ✅ Works with any tool that outputs to stdout

  • ✅ Minimal resource overhead

File Analysis Pattern

Batch processing of log files:

# Local files
gonzo -f application.log

# Cloud exports
aws logs tail /aws/lambda/function --since 1h > export.log
gonzo -f export.log

# Archived logs
gonzo -f /var/log/app.log.1

# Multiple sources
gonzo -f app.log -f nginx.log -f db.log

Benefits:

  • ✅ Works with archived logs

  • ✅ Repeatable analysis

  • ✅ Can combine multiple sources

  • ✅ Good for historical investigation

OTLP Integration Pattern

OpenTelemetry Protocol receiver:

# Start Gonzo as OTLP receiver
gonzo --otlp-enabled

# Configure your applications to send logs to:
# gRPC: localhost:4317
# HTTP: http://localhost:4318/v1/logs

# Monitor real-time + backup to file
gonzo --otlp-enabled -f backup.log --follow

Benefits:

  • ✅ Native OpenTelemetry integration

  • ✅ Structured log data preserved

  • ✅ Multiple applications simultaneously

  • ✅ Standard protocol

Quick Start by Use Case

"I use Kubernetes"

# Start here: Kubernetes Integration
# 1. Install stern (optional but recommended)
brew install stern

# 2. Stream logs with stern + Gonzo
stern backend | gonzo --ai-model="gpt-4"

# 3. Or use kubectl directly
kubectl logs -f -l app=backend | gonzo

Full Kubernetes Guide

"I use AWS"

# Start here: CloudWatch Integration
# 1. Install AWS CLI
# 2. Configure credentials

# 3. Stream CloudWatch logs
aws logs tail /aws/lambda/my-function --follow | gonzo

# 4. Or analyze log groups
aws logs tail my-log-group --since 1h | gonzo --ai-model="gpt-4"

Full CloudWatch Guide

"I use Docker"

# Start here: Container Integration
# 1. Start your containers

# 2. Monitor container logs
docker logs -f my-container 2>&1 | gonzo

# 3. Or Docker Compose services
docker-compose logs -f | gonzo --ai-model="gpt-3.5-turbo"

Full Docker Guide

"I have traditional servers"

# Start here: System Administration
# 1. Identify your log files

# 2. Monitor system logs
sudo tail -f /var/log/syslog | gonzo

# 3. Or analyze multiple sources
gonzo -f /var/log/syslog -f /var/log/auth.log --follow

Full System Admin Guide

Integration Best Practices

🎯 Choose the Right Integration Method

  1. Real-time monitoring → Use streaming (piping)

  2. Historical analysis → Use file analysis

  3. OpenTelemetry apps → Use OTLP receiver

  4. Mixed sources → Combine multiple methods

Performance Optimization

# For high-volume streams, pre-filter
kubectl logs -f deployment/app | grep -E "(ERROR|WARN)" | gonzo

# Adjust buffer sizes for volume
docker logs -f container | gonzo --log-buffer=20000

# Use appropriate update intervals
tail -f /var/log/busy.log | gonzo --update-interval=5s

🔐 Security Considerations

# Use appropriate authentication
export AWS_PROFILE=production
aws logs tail /aws/lambda/function | gonzo

# Handle sensitive data
# Use local AI for sensitive logs
export OPENAI_API_BASE="http://localhost:11434"
kubectl logs sensitive-app | gonzo --ai-model="llama3"

# Respect access controls
# Use proper IAM roles, RBAC, etc.

📝 Documentation and Sharing

# Document your integration commands
cat > analyze-prod-logs.sh << 'EOF'
#!/bin/bash
# Production log analysis with Gonzo
# Usage: ./analyze-prod-logs.sh

kubectl logs -f -l app=backend,env=prod | \
gonzo --config prod.yml --ai-model="gpt-4"
EOF

chmod +x analyze-prod-logs.sh

# Share with team
git add analyze-prod-logs.sh
git commit -m "Add production log analysis script"

Common Integration Patterns

Multi-Source Aggregation

# Combine multiple log sources
(kubectl logs -f deploy/api & \
 kubectl logs -f deploy/worker & \
 kubectl logs -f deploy/scheduler) | gonzo

# Multiple containers
docker logs -f api 2>&1 & \
docker logs -f db 2>&1 & \
docker logs -f cache 2>&1 | gonzo

# Multiple files with follow
gonzo -f /var/log/app/*.log --follow

Filtered Streaming

# Pre-filter for performance
kubectl logs -f deployment/app | \
grep -v DEBUG | \
gonzo --log-buffer=10000

# Filter by severity
stern backend | \
grep -E "(ERROR|WARN|FATAL)" | \
gonzo --ai-model="gpt-4"

# Combine filters
aws logs tail /aws/lambda/fn --follow | \
jq -r 'select(.level=="error") | .message' | \
gonzo

Scheduled Analysis

# Cron job for daily analysis
0 2 * * * /usr/local/bin/analyze-logs.sh

# analyze-logs.sh
#!/bin/bash
aws logs tail /aws/lambda/function \
    --since 24h \
    --format short | \
gonzo --config daily-analysis.yml \
      --ai-model="gpt-4" > /var/log/daily-analysis.txt

Troubleshooting Integrations

Connection Issues

# Test connectivity first
kubectl cluster-info
aws sts get-caller-identity
docker ps

# Verify tool output
kubectl logs pod-name | head -10
aws logs tail log-group --since 5m | head -10

# Then add Gonzo
kubectl logs pod-name | gonzo

Performance Issues

# If Gonzo is slow with integration:

# 1. Check log volume
kubectl logs pod-name | wc -l

# 2. Pre-filter if needed
kubectl logs pod-name | grep ERROR | gonzo

# 3. Adjust Gonzo settings
kubectl logs pod-name | gonzo --update-interval=5s --log-buffer=2000

Format Issues

# If logs aren't parsing correctly:

# 1. Check log format
kubectl logs pod-name | head -5

# 2. Test format detection
echo '{"test":"log"}' | gonzo

# 3. Ensure proper JSON/logfmt
# Gonzo auto-detects but prefers structured logs

What's Next?

Choose the integration guide that matches your infrastructure:

  • Kubernetes Integration - K8s clusters with kubectl and stern

  • AWS CloudWatch - AWS cloud log services

  • VictoriaLogs - High-performance log storage

  • Docker Containers - Container log analysis

  • System Administration - Traditional system logs

  • Development Workflows - IDE and development integration

Or explore advanced topics:

  • Configuration - Optimize for your integration

  • Advanced Features - Powerful analysis techniques

  • Troubleshooting - Integration-specific issues


Integrate Gonzo into your existing workflows for powerful log analysis anywhere! 🚀 From cloud platforms to container orchestration, Gonzo adapts to your infrastructure.

Last updated